HEAT IN CHANGES OF STATE

Section Review

Objectives

- Classify, by type, the enthalpy changes that occur during melting, freezing, boiling, and condensing
- · Calculate the enthalpy changes that occur during melting, freezing, boiling, and condensing
- · Explain what thermochemical changes can occur when a solution forms

Vocabulary

- · molar heat of fusion
- · molar heat of condensation
- molar heat of solidification
- · molar heat of solution
- · molar heat of vaporization

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The heat absorbed by 1 mole of a substance in melting from	1
a solid to a liquid at a constant temperature is called the1	2
The heat lost when 1 mole of a liquid solidifies at a constant	3
temperature is called the2 The quantity of heat absorbed	4
by a melting solid is 3 to the quantity of heat lost when the	5
liquid solidifies. The heat of fusion for methanol is4	6
When liquids absorb heat at their boiling points, they become	7
vapors. The amount of heat necessary to vaporize one mole of a	
given liquid is called its $\underline{}$. $\underline{}$ is the exact opposite of	
vaporization. The amount of heat released when one mole of vapor	
condenses is called its7	

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

8. $\Delta H_{\rm fus} = -\Delta H_{\rm solid}$

9. Melting and vaporization are exothermic processes.

10. In order to convert 1 mole of $H_2O(l)$ to 1 mol of $H_2O(g)$, 40.7 kJ must be supplied.

_____ 11. When ice melts, the temperature of the ice increases until the entire sample becomes liquid.

___ **12.** When ammonium nitrate dissolves in water, the solution gets cold. This is an example of an exothermic reaction.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

______13. molar heat of fusion a. the in r ______14. molar heat of solidification b. the ______1 molar heat of vaporization c. = ______16. $\Delta H_{\rm vap}$ d. the

- **a.** the heat absorbed by 1 mole of a substance in melting from a solid to a liquid
- **b.** the amount of heat necessary to vaporize 1 mole of a liquid
- $\mathbf{c}_{\bullet} = -\Delta H_{\mathrm{cond}}$
- **d.** the heat change caused by dissolution of 1 mole of substance
- **e.** the heat lost when 1 mole of a liquid solidifies at a constant temperature

Part D Questions and Problems

Answer the following in the space provided.

17. molar heat of solution

18. State whether the following physical and chemical changes are endothermic or exothermic.

a. melting

d. fusion

b. vaporization

e. freezing

c. condensation _____

f. combustion

- **19.** How much heat is absorbed when 28.3 g of $H_2O(s)$ at 0°C is converted to liquid at 0°C?
- **20.** How much heat is absorbed when 5.53 mol of NH₄NO₃ solid is dissolved in water? ($\Delta H_{\rm soln} = 25.7$ kJ/mol)